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Given a suitable stable monoidal model category C and a specialization closed
subset V of its Balmer spectrum, one can produce a Tate square for decomposing
objects into the part supported over V and the part supported over V c spliced with
the Tate object. Using this one can show that C is Quillen equivalent to a model
built from the data of local torsion objects, and the splicing data lies in a rather rich
category. As an application, we promote the torsion model for the homotopy category
of rational circle-equivariant spectra of Greenlees (1999) to a Quillen equivalence. In
addition, a close analysis of the one-step case highlights important features needed
for general torsion models, which we will return to in future work.
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2806 Scott Balchin, John Greenlees, Luca Pol and Jordan Williamson

1 Introduction

The goal of this series of papers is to prove the existence of a model for a tensor-
triangulated category T which is built from local torsion objects. When T is the derived
category D.R/ of a commutative Noetherian ring R, this corresponds to building a
module from its local cohomology at each prime, and when working in chromatic
homotopy theory this corresponds to building a spectrum from its monochromatic
pieces. The main observation is that the splicing data lies over completed rings, making
it more algebraic. The motivating example is the torsion model of Greenlees [18],
which is an algebraic counterpart of reconstructing a rational circle-equivariant spectrum
from pieces with a single geometric isotropy group. This work began with a view to
extending this model to higher-dimensional tori.

1.1 Overview

Given a tensor-triangulated category .T;˝; 1/, one can consider the Balmer spectrum
Spc!.T/ of its compact objects, which is a spectral topological space categorifying
the Zariski spectrum of a commutative ring. This allows one to apply methods from
commutative algebra in more general contexts. The reader may wish to consider
the special case T D D.R/ for a commutative Noetherian ring R whilst reading the
motivation. We will give the general details later.

In reconstructing an R–module M there are several approaches. The Zariski standard
model reconstructs M from its localizations L}M WD M} at primes }, giving the
equivalence between R–modules and quasicoherent sheaves over Spc!.T/ where the
rather complicated reconstruction data is encoded in the topology on the étale space of
the sheaf. This has the feature that L}M will usually have support spread over several
primes.

We may instead assemble a module from its torsion pieces supported at individual
primes; in effect, we reconstruct M from its local cohomology L}�}M — essentially
H�}.M}/— at the various primes. In other words, we reconstruct a module M from a
version of its Cousin complex. We call this the Zariski torsion model.

As an alternative to using localizations, we may reconstruct M from its localized
completions .M^} /} as in Balchin and Greenlees [3], which we call the adelic standard
model (properly speaking, if M is not compact we use L}ƒ}1˝M ; the model based
on L}ƒ}M is the adelic categorical model which will not concern us here). The
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Torsion models for tensor-triangulated categories: the one-step case 2807

advantage is twofold. First, we may use adelic structure to stick the pieces together,
which is simpler and more algebraic than for the Zariski standard model; and second
the localized completed rings are more likely to be algebraic, or even formal.

Finally, there is the adelic torsion model, which is the subject of this paper: we are once
again reconstructing M from its local cohomology, but now working over completed
rings. Since local cohomology does not notice completions, the pieces themselves
are essentially the same as for the torsion version of the Zariski model, but now the
reconstruction takes place in a more algebraic environment; it is this richer version that
we call the adelic torsion model. Henceforth we will refer to the adelic standard and
torsion models simply as the standard and torsion models, unless we wish to emphasize
the distinction between the adelic and the Zariski approach.

The standard and torsion approaches have different advantages and disadvantages.
The standard approach behaves well for monoidal structures. Since completion is
exact on finitely generated modules, the splicing data in the standard approach is often
represented at the abelian category level and one hopes to have lower homological
dimension in algebraic versions. On the other hand, objects tend to be quite large from
a naive point of view. Objects in the torsion model tend to be smaller, but monoidal
information is lost. Furthermore, the local cohomology of nice modules is in the top
cohomological degree, so the splicing information in the torsion model tends to be
only visible at the derived level and the homological dimension in algebraic versions is
larger.

At this point, it is worth considering the simple example of the derived category D.Z.p//

of the p–local integers. We consider the reconstruction of a Z.p/–module M in each
of the four models.

� In the Zariski standard model, since Z.p/ is a local ring, the module itself occurs
as the stalk over p, so the Zariski model does not simplify anything.

� In the Zariski torsion model we considerM as built fromM˝Q (the contribution
at .0/) and M ˝Q=Z.p/ (derived tensor, the contribution at .p/).

� In the adelic standard model we consider M built from M ˝Q (the contribution
at .0/) and M ˝Z^p (the contribution at .p/).

� In the adelic categorical model we considerM built fromM˝Q (the contribution
at .0/) and ƒpM (the contribution at .p/).
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2808 Scott Balchin, John Greenlees, Luca Pol and Jordan Williamson

� In the adelic torsion model we again consider M as built from M ˝Q (the
contribution at .0/) and ƒpM ˝Q=Z.p/ DM ˝Q=Z.p/, but now the latter is
viewed as a module over the p–adic integers.

Looking at an example from equivariant homotopy illustrates the distinction between
the Zariski torsion model and the adelic torsion model more starkly, but we will return
to that when we have more language.

1.2 The dimension filtration

It is natural to mimic algebraic geometry, filtering the space Spc!.T/ by the dimension
of its primes

∅D Spc!.T/��1 � Spc!.T/�0 � Spc!.T/�1 � � � � � Spc!.T/;

where Spc!.T/�s consists of those primes of dimension � s. Following Balmer [6] and
Stevenson [40], the category T has a corresponding filtration T0 � T1 � T2 � � � � � T

by dimension of support. In any case, the set Spc!.T/�s n Spc!.T/�s�1 consists of
primes of exact dimension s. With the torsion approach, the Verdier quotient Ts=Ts�1
splits as a sum of contributions from primes of exact dimension s. For the torsion
model, the part over a prime p is p–local and torsion.

In view of this splitting, our main focus is on how to splice together the part of T

coming from primes of dimension s to the part of T supported on the generalization
closed subset U D Spc!.T/>s of primes of dimension > s. It is in this splicing that
the distinction between the Zariski and adelic torsion models appears. We will focus
our attention on categories where the Balmer spectrum is Noetherian since the splicing
is significantly simpler in that case.

In the present paper we consider the case when there is just one step in the assembly pro-
cess. We will follow this process through for the torsion model in a higher-dimensional
Noetherian setting in [4]. Ensuring that the splicing data is algebraic requires us to
refine the naive iterative approach.

When the Balmer spectrum is not Noetherian, the Zariski topology is no longer generated
by the closures of points, bringing a significant additional layer of complication. The
general framework for assembling models from a good filtration of the Balmer spectrum
in this context is studied by Balchin, Barthel and Greenlees [2].
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1.3 The one-step context

When we are dealing with just one step, it is helpful to consider a more general context
so we can identify particular features which lead to good behaviour.

We begin with a smashing localization L giving the context of Greenlees [19] from
which we can construct our basic framework. The associated torsion functor is the
fibre � , and this then also gives the associated completionƒDHom.�1;�/. Altogether
we have the diagram

�1 1 L1

�ƒ1 ƒ1 Lƒ1

'

in which the right-hand square is a homotopy pullback.

For the motivating example in our general programme, we choose a subsetU of the spec-
trum Spc!.T/ closed under generalization, such as the set of primes of dimension > s.
One may then form a smashing localization X ! LX supported at U .

It may be helpful to consider three running examples to illustrate the discussion:

(1) The derived category D.Z.p// of the p–local integers, where we take L to be
rationalization. Equivalently this is given by choosing U to consist of the zero
ideal.

(2) The E.n/–local category of spectra LnSp (implicitly p–local). Here we take L
to be the smashing localization at the Johnson–Wilson theory E.n� 1/, which
corresponds to setting U to be the collection of primes of dimension > 0.

(3) The category SpG of G–equivariant spectra for G a compact Lie group. Here
we choose a family F of subgroups and take L to be the smashing localization
making the underlying spectrum F–contractible.

We have:

T 1 L1 �1 ƒ1 Lƒ1

D.Z.p// Z.p/ Q †�1Q=Z.p/ Z^p Q˝Z^p
LnSp LnS

0 Ln�1S
0 MnS

0 LK.n/S
0 Ln�1LK.n/S

0

SpG S0 zEF EFC DEFC zEF^DEFC

For more details on these examples, see Section 5.
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2810 Scott Balchin, John Greenlees, Luca Pol and Jordan Williamson

The above diagram shows that the Tate square

1 L1

ƒ1 Lƒ1

expresses the unit 1 of T as the homotopy pullback of localized completed pieces.
Moreover, the objects occurring in the Tate square are still monoid objects in T, and the
square yields the standard model of T in terms of modules over the localized-completed
pieces [3]. The price to pay for having monoids is that the completion functor involves
some “blurring” around V so that the objects may have contributions from open sets
containing V (for example Z^p has nontrivial rationalization). Indeed, if the completion
had support precisely at V , then the Tate object Lƒ1 would be equivalent to the zero
object and 1 would be a product. The fact that the Tate object Lƒ1 is nonzero is
because of the blurring appearing in the completion ƒ.

The current paper gives a related model built instead from pieces which are torsion in
the sense of the functor � . When we use the dimension filtration in [4] the pieces will
each be supported at a single prime.

The diagram
L1

ƒ1 Lƒ1 †�ƒ1'†�1

shows the relationship between the standard model and the torsion model. The standard
model comes from the three left-hand objects. The torsion model comes from the three
right-hand objects. This is called the torsion model because the whole category relative
to the local category is controlled by the torsion object �1.

The two models determine each other. The three objects in the standard model give the
Tate square by taking pullbacks, and hence the whole diagram by taking fibres. The
three objects in the torsion model give the left-hand object by taking the fibre of the
horizontal and then one reconstructs the whole diagram as before.

1.4 The torsion model

Suppose that T is a tensor-triangulated category which is the homotopy category of a
well-behaved stable monoidal model category C; see Section 3.2 for detailed conditions.

Algebraic & Geometric Topology, Volume 22 (2022)
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We now give an informal statement of the one-step torsion model. The model is in
terms of the sections of the diagram

ModL1

ModLƒ1 Modƒ1

�

This consists of an object in each vertex category together with maps relating these
(after suitable extension of scalars). The dot on the vertical map indicates that the
object in the bottom left category is obtained from that in the top left by extension of
scalars; see Section 2.2. More precisely, an object of this diagram is a ƒ1–module
map ˇ W Lƒ1˝L1 V ! T , where V is an L1–module and T is a ƒ1–module.

The main theorem states that the model category C is Quillen equivalent to a cellular-
ization of the category of sections which introduces the torsion character of the model.
The following theorem specializes Theorems 8.4 and 8.7 in the main body of the paper:

Theorem There is a Quillen equivalence

C'Q cell-

0BB@
ModL1

ModLƒ1 Modƒ1

�

1CCA :
The effect of the cellularization is that an object of the tensor-triangulated category hC
is equivalent to one specified by

� an L1–module V ;

� a ƒ1–module T which is torsion in the sense that �T ' T ;

� a ƒ1–module map Lƒ1˝L1 V ! T .

It is rare for the monoids appearing in the model to have formal homotopy. However,
one can hope to use the torsion model as a first step towards an algebraic classification,
such as the construction of an Adams spectral sequence.

In very favourable cases the torsion model may be equivalent to the derived category of
an abelian category. Currently the best examples of this come from rational equivariant
cohomology theories. With this example in mind we can highlight the advantage of the
adelic torsion model over the Zariski torsion model.
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2812 Scott Balchin, John Greenlees, Luca Pol and Jordan Williamson

The Zariski torsion model corresponds to the usual isotropy separation filtration (con-
structing X from X ^EFC and X ^ zEF). This is a very powerful method, but it is
not very algebraic because the sphere is very far from being formal, and its coefficient
ring is very complicated. By contrast, the adelic torsion model does the same thing
relative to the Tate construction on the sphere (constructing X from X ^EFC and
X ^DEFC ^ zEF). These spectra are both modules over the ring DEFC. If we
are working rationally, then DEFC has well understood homotopy and is formal, so
working over this ring is a big advantage.

1.5 Rational T–spectra

For any compact Lie group G, the second author conjectured the existence of a graded
abelian category A.G/ together with a Quillen equivalence

SpG=Q'Q dA.G/

between rational G–spectra and differential objects in A.G/. We call the category
A.G/ an abelian model, and dA.G/ the algebraic model.

For the circle groupGDT , two abelian categories A.T / and At .T / are defined in [18]
as follows. Let OF D

Q
F 2FH

�.BT=F /, where F is the family of finite subgroups
of T . Inverting the Euler classes E gives a ring tF D E�1OF. We define

A.T /D fˇ WN ! tF˝V j ˇ is inversion of Eg; dAt .T /D ftF˝V ! T g;

where V is a graded Q–vector space, N is an OF–module and T is an Euler torsion
OF–module. For more details see Section 10. It is also shown in [18] that the derived
categories of A.T / and At .T / are both equivalent to the homotopy category of rational
T–spectra. The category A.T / is called the standard model for rational T–spectra, and
the category At .T / is called the torsion model for rational T–spectra. The standard
model has better monoidal properties and lower homological dimension, but the torsion
model is often more approachable; see [18, Part II].

The equivalence hSpT 'D.A.T // between rational T–spectra and the derived category
of the standard model has since been promoted to a Quillen equivalence by Greenlees
and Shipley [27], shown to be monoidal in Barnes, Greenlees, Kędziorek and Shipley [9].
The general theory developed in this paper shows the equivalence hSpT ' D.At .T //

between rational T–spectra and the torsion model can be promoted to a Quillen
equivalence, which moreover proves that the equivalence is triangulated. The following
theorem appears in the main body of the paper as Theorem 10.8:

Algebraic & Geometric Topology, Volume 22 (2022)
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Theorem There is a Quillen equivalence

SpT 'Q dAt .T /;

and hence a triangulated equivalence hSpT '4 D.At .T //.

The proof of the equivalence hSpT ' D.At .T // given in [18] passes through the
equivalence hSpT ' D.A.T // to the standard model, obscuring the relation between
the topology and the abelian torsion model At .T /. Our proof is more direct: it proceeds
by splitting T–spectra into its F–local and F–torsion parts and showing the resulting
model is formal.

In future work [4], we will describe a torsion model for rational G–spectra when G is
a torus of arbitrary rank.

Conventions

We will follow the convention of writing the left adjoint on the top in adjoint pairs
displayed horizontally, and on the left in adjoint pairs displayed vertically. Weak equiv-
alences have a direction, but weak equivalence of objects is the resulting equivalence
relation. We handle Quillen equivalences similarly. Given a (graded or ungraded)
ring R we write ModR for the category of dg R–modules. All cellularizations are at
stable sets of objects.
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2 Diagrams of module categories

Throughout the paper we freely use the language of model categories and use [32] as a
reference. We briefly recall some results on categories of modules and on diagrams of
model categories as they will be used repeatedly throughout.
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2.1 Module categories

Let C be a monoidal model category and let R be a monoid in C. Denote by ModR.C/
the category of (left) R–modules in C. If the ambient category is clear, we will omit it
from the notation. We will be interested in two model structures on ModR.C/:

Projective model structure The weak equivalences and fibrations are determined in
the underlying category C. This exists under mild conditions on C; see [35].

Injective model structure The weak equivalences and cofibrations are determined in
the underlying category C. This exists under more stringent hypotheses on C; see [29].

We will be particularly interested in the following algebraic cases:

Example 2.1 Let R be a graded ring. The category of dg modules over R supports a
projective model structure where the weak equivalences are the quasi-isomorphisms,
the fibrations are the surjections, and the cofibrations are the monomorphisms which
are split on the underlying graded modules and which have dg projective cokernel.
See [1] for details.

Example 2.2 The category of dg modules over R also supports an injective model
structure where the weak equivalences are the quasi-isomorphisms and the cofibrations
are the monomorphisms, see [32, 2.3.13] for example. This is important for our paper
for the following reason. For a finitely generated homogeneous ideal I , let us consider
the full subcategory of I–power torsion modules. One observes that the category of
torsion modules is abelian but does not have enough projectives, in particular, it does
not support a projective model structure. However, one can show that it has enough
injectives, so it does support a injective model structure; see [32, 2.3.13; 23, 8.6].

Given a map of monoids � W S !R in C there is an adjoint triple

ModS ModR
��

�Š

��

given by restriction of scalars ��, extension of scalars �� DR˝S � and coextension
of scalars �Š D HomS .R;�/. This triple of functors is not always Quillen, as the
following result shows:

Lemma 2.3 [46, 3.8] Let � W S ! R be a map of monoids in a monoidal model
category C. The extension of scalars functor �� is always left Quillen in the projective
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model structure. If the unit of C is cofibrant , then the restriction of scalars functor ��

is left Quillen in the projective model structure if and only if R is cofibrant as an
S–module.

2.2 Diagrams of model categories

We recall the necessary background from [26].

Definition 2.4 Let D be a small category. A diagram of model categories of shape D

is a collection of model categories C.d/ for each d 2 D together with a left Quillen
functor C.f / W C.d/! C.d 0/ for each morphism f W d ! d 0 in D, which are strictly
compatible with composition. Equivalently, this is a functor from D into the category
of model categories and left Quillen functors.

Definition 2.5 Let C be a diagram of model categories of shape D. The category
of sections of C consists of an object Xd 2 C.d/ for each d 2 D together with maps
C.f /.Xd /! Xd 0 in C.d 0/ for each morphism f W d ! d 0 in D, which are strictly
compatible with composition.

We make a particular case of interest explicit.

Example 2.6 Let T �
�! S

'
 � R be a diagram of monoids in a monoidal model

category. If we assume that S is cofibrant as an R–module, then using the projective
model structure in all three cases, Lemma 2.3 ensures that

ModT
���!ModS

'�
�!ModR

is a diagram of model categories. The category of sections consists of the following
data:

� a T –module L;

� an S–module M ;

� an R–module N ;

� an S–module map ��L!M ;

� an R–module map '�M !N .
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The category of sections of C supports a “diagram injective” model structure under some
combinatorial conditions on the indexing category. Recall that D is called an inverse
category if, informally, the morphisms in Dop only “go in one direction”. We refer the
reader to [32, 5.1.1] for the definition, and here instead give two main examples:

�! � � and �! �! �:

We have the following result:

Theorem 2.7 [26, 3.1] Let C be a diagram of model categories of shape D, where D

is an inverse category. There is a diagram injective model structure on the category of
sections of C with weak equivalences and cofibrations determined objectwise. More-
over , if each C.d/ is cellular and proper then so is the diagram injective model structure
on C.

Notation 2.8 We will often consider diagrams of module categories as in Example 2.6.
The category of sections admits a dimp (diagram injective, module projective) model
structure and a dimi (diagram injective, module injective) model structure.

3 Tensor-triangulated categories and their enhancements

3.1 Balmer spectrum

We recall the necessary background from [5].

Definition 3.1 A tensor triangulated category consists of a triangulated category T

and a symmetric monoidal tensor product˝WT�T!T which is exact in each variable.
We additionally assume that T is closed symmetric monoidal and denote the internal
hom by Hom.

A full subcategory of T is thick if it is closed under suspensions, completing triangles
and taking retracts. It is localizing if it is thick and closed under arbitrary sums.
Finally, it is an ideal if it is closed under tensoring with arbitrary objects of T. For
a set of objects K in T, we write Thick.K/ for the smallest thick subcategory of T
containing K, and Loc.K/ for the smallest localizing subcategory of T containing K.
We write Thick˝.K/ for the smallest thick subcategory of T containing K and closed
under tensoring with compact objects. We write Loc˝.K/ for the smallest localizing
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subcategory of T containing K and closed under tensoring with arbitrary objects. If 1
is a compact generator for T then Thick.K/D Thick˝.K/ and Loc.K/D Loc˝.K/.

To avoid set theoretical issues we will restrict to essentially small tensor triangulated
categories. Concretely, this means that given a tensor triangulated category T, we will
restrict to the full subcategory T! of compact objects; that is, those objects X of T for
which the functor ŒX;�� preserves arbitrary sums. Recall that an object X of T is said
to be dualizable if the natural map Hom.X;1/˝Y ! Hom.X; Y / is an isomorphism
for all Y 2 T. In general T! will not always be essentially small; however, it is when T

is rigidly compactly generated. This means that T has a set of compact and dualizable
objects G that generates the whole category in the sense that Loc.G/ D T, and the
monoidal unit 1 is compact. It follows that the compact objects and the dualizable
objects in T coincide; see [33, 2.1.3(d)].

We list a few key examples of rigidly compactly generated tensor triangulated categories.

Examples 3.2 (a) The derived category D.R/ of a commutative ring is a tensor
triangulated category with respect to the (derived) tensor product of R–modules. It is
compactly generated by R, and the full subcategory of compact objects coincides with
that of perfect complexes, ie those complexes that are quasi-isomorphic to a bounded
complex of finitely generated projectives.

(b) The stable homotopy category hSp is a tensor triangulated category with respect
to the (derived) smash product. It is compactly generated by the sphere spectrum S0,
and the full subcategory of compact objects coincides with that of finite spectra, that is,
spectra of the form †nA where A is a homotopy retract of a finite based CW-complex
and n is an integer.

(c) For G a compact Lie group, the equivariant stable homotopy category hSpG is a
tensor triangulated category with respect to the (derived) smash product. It is compactly
generated by the set of cosets G=HC as H ranges over the closed subgroups of G.
The compact objects are those of the form S�V ^†1A for V a G–representation
and A a homotopy retract of a based finite G–CW-complex [34, I.4.7]. One category
of particular interest in this paper comes from considering the rational version of
this category, that is, the category obtained by localizing with respect to the rational
equivalences.

(d) Let G be a finite group and k be a field with characteristic dividing the order of G.
The stable module category StMod.kG/ is a tensor triangulated category with respect

Algebraic & Geometric Topology, Volume 22 (2022)

 This publication is with permission of the rights owner freely accessible due to an Alliance
licence and a national licence respectively.
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to the tensor product �˝k � with diagonal G–action. It is compactly generated by the
simple modules, and the full subcategory of compact objects coincides with the class
of finitely generated kG–modules.

Definition 3.3 Let T be a tensor triangulated category.

� A prime ideal is a proper thick ideal p with the property that

x˝y 2 p D) x 2 p or y 2 p:

� The Balmer spectrum Spc!.T/ is the set of all prime ideals of T! .

� We endow the Balmer spectrum with a Zariski topology generated by the closed
sets

supp.X/D fp 2 Spc!.T/ jX … pg;

where X ranges over the compact objects of T. In particular, the specialization
closure of a prime p is given by fpg D fq j q� pg.

We recall the following important result, which we will use repeatedly throughout:

Proposition 3.4 [5, 2.6] Let T be a rigidly compactly generated tensor triangulated
category. The support of compact objects of T has the following properties:

(a) supp.0/D∅ and supp.1/D Spc!.T/.

(b) supp.X ˚Y /D supp.X/[ supp.Y /.

(c) supp.†X/D supp.X/.

(d) supp.Y / � supp.X/ [ supp.Z/ for any distinguished triangle X ! Y !

Z!†X .

(e) supp.X ˝Y /D supp.X/\ supp.Y /.

Moreover , two compact objects have equal support if and only if they generate the same
thick ideal. In particular , if an object has empty support , it is equivalent to the zero
object.

We will only consider Balmer spectra which are Noetherian spaces, that is those
which satisfy the ascending chain condition for open subsets. By [7, 7.14], the Balmer
spectrum is Noetherian if and only if for each prime p there exists a compact object
Kp in T such that supp.Kp/D fpg. We will call Kp a Koszul object for p.
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The dimension of a prime is the length of a maximal length chain of primes down
to a closed point (= minimal prime). The dimension of the Balmer spectrum is the
supremum of the dimensions of all primes. We note that such a chain always exists as
the space is spectral [15].

3.2 Sufficiently nice model categories

Our methods require that our tensor-triangulated category is the homotopy category of
a suitable stable monoidal model category. Many of the finer details will be omitted
since they are not relevant for the remainder of the paper, but we recall essentials from
[3, Section 4].

Let C be a model category. The first requirement is that the homotopy category hC is
tensor-triangulated. If C is a stable, symmetric monoidal model category this is true [32,
4.3.2, 6.6.4, Section 7.1]. We will moreover assume that the model structure on C

satisfies the monoid axiom which ensures that categories of modules over monoids in C

support a projective model structure; see [35]. Next, we need to be able to perform left
Bousfield localizations and cellularizations (ie right Bousfield localizations). In order
to do this, we assume that C is proper and cellular. It then follows by [30, 4.1.1, 5.1.1]
that left Bousfield localizations at sets of maps, and cellularizations at sets of objects
exist.

In order to ensure that the homotopy category hC is rigidly compactly generated, we
assume that C is compactly generated in the sense of [42, 1.2.3.4], has unit 1 cofibrant
and cell-compact, and has generating cofibrations of the form Sn˝G!�nC1˝G,
where G is a suitable set of cell-compact cofibrant objects which will become the
compact generators of hC. The fact that these assumptions guarantee that hC is rigidly
compactly generated follows from [42, 1.2.3.7, 1.2.3.8]. These conditions also ensure
that homological localizations exist [3, Section 6.A].

Definition 3.5 We say that a stable symmetric monoidal model category C is rigidly
compactly generated if it satisfies the above conditions.

In summary we have the following:

Theorem 3.6 Let C be a rigidly compactly generated model category , then its homo-
topy category hC is a rigidly compactly generated tensor-triangulated category.
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As already alluded to in the previous section, we do not wish to consider all tensor-
triangulated categories, but only those whose Balmer spectrum has a particularly tame
form. This leads us to the final definition of this section.

Definition 3.7 A rigidly compactly generated model category C is said to be a finite-
dimensional Noetherian model category if Spc!.hC/ is a finite-dimensional Noetherian
space.

We refer to Section 5 for a discussion of some examples of finite-dimensional Noetherian
model categories.

4 Localization, completion and support

4.1 Localization, completion and support

First we define localization, torsion and completion functors, and use them to define
support. Additional details can be found in [3; 41].

Let C be a finite-dimensional Noetherian model category, and write G for a set of
compact and dualizable generators. By the Noetherian condition, for each prime p we
may choose a Koszul object Kp — ie compact and with support fpg. These are not
canonical, but any two generate the same thick tensor ideal, so that constructions below
will not depend on this choice. The theory of supports shows

pD Thick˝.Kq j p 6� q/:

Given a collection of prime ideals S we let K.S/ denote a set of Koszul objects for S,
ie K.S/D fKp j p 2 Sg. A collection of prime ideals S is said to be a family if p 2 S
and q� p implies that q 2 S, and cofamily if p 2 S and p� q implies that q 2 S.

Remark 4.1 We have adopted the terminology from equivariant topology for brevity.
The standard geometric terminology is that a family is “a specialization closed set” and
that a cofamily is “a generalization closed set”. It is helpful to observe that a Zariski
closed set is a family, and a Zariski open set is a cofamily.

In particular, we will consider the cones below and above a fixed prime p:

^.p/D fq j q� pg and _ .p/D fq j p� qg:
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By definition ^.p/ is a family and _.p/ is a cofamily. We note that ^.p/ is the
specialization closure of fpg.

Given a family V , we may define associated torsion, localization and completion
functors, which are independent of the choice of Koszul objects K.V /.

Definition 4.2 Let V be a family with complement V c the associated cofamily.

� The torsion functor �V is the cellularization at K.V /˝G.

� The localization functor LV c is the nullification of K.V /.
� The completion functor ƒV is the homological localization at

L
p2V Kp.

Remark 4.3 (a) The functors �̂ .p/, ƒ^.p/ and L_.p/ play a particularly important
role. We note that the definitions of these can be simplified as follows, by the
theory of supports:
� �̂ .p/ is the cellularization at Kp˝G;
� L_.p/ is the nullification of Kp;
� ƒ_.p/ is the homological localization at Kp.

(b) The apparent asymmetry between �V and ƒV is due to the fact that Bousfield
localization is defined in terms of an enrichment in spaces (ie map.Kp; X/ is a
space rather than an object of C), whereas that of a homological localization is
defined in terms of the tensor product, and Kp˝X is an object of C.

(c) We remark that [3, 6.7] is therefore incorrect unless the category is compactly
generated by its tensor unit, and should instead refer to cellularization at Kp˝G.

(d) Since the homotopy category of a cellularization at a set of compact objects K is
the localizing subcategory generated by K (see [24, 2.5, 2.6]), one sees that the
homotopy category of V –torsion objects is the localizing tensor ideal generated
by K.V /. This puts us in the context of [19].

Using these functors we can define a notion of support for noncompact objects follow-
ing [11].

Definition 4.4 We define the support of on object M 2 C by

supp.M/D fp 2 Spc!.hC/ j �̂ .p/L_.p/M 6' 0g:

Recall the notion of support for compact objects from Definition 3.3. We record the
following key facts:
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Proposition 4.5 [7, 7.17], [39, 6.9(ii)] Let C be a finite-dimensional Noetherian
model category. The support defined above satisfies the following properties:

(a) The two notions of support coincide for any compact objects of C.

(b) The support defined above satisfies:
(1) supp

�L
i2I Xi

�
D
S
i2I supp.Xi / for any set of objects fXigi2I in C.

(2) supp.†X/D supp.X/ for all X 2 C.
(3) There is an inclusion supp.X ˝Y /� supp.X/\ supp.Y / for any X; Y 2 C.

This is an equality if X and Y are compact objects.
(4) Given a distinguished triangleX!Y !Z!†X in C, there is an inclusion

supp.Y /� supp.X/[ supp.Z/.

(c) An object has empty support if and only if it is zero.

It follows from the definition of the torsion and localization functors, that for any object
X of C, there is a natural cofibre sequence

�VX !X ! LV cX

with
supp.�VX/D supp.X/\V and supp.LV cX/D supp.X/ nV:

Example 4.6 Let V consist of the primes of dimension less than or equal to n. In this
case we write �V D ��n, LV c D L�nC1 and ƒV Dƒ�n. The notation is chosen as
such for the effect on the supports; for example supp.��n1/ is the collection of primes
of dimension less than or equal to n, and supp.L�nC11/ is the collection of primes of
dimension greater than or equal to nC 1.

4.2 Properties of the functors

The following proposition records key facts and properties which we will use throughout
this paper:

Proposition 4.7 Let V be a family.

(a) The functors LV c and ƒV preserve monoid objects as endofunctors on C.

(b) The functors �V and LV c are smashing (ie �VX ' �V 1˝ X and LV cX '

LV c 1˝X ), but ƒV is usually not smashing.

(c) If R denotes fibrant replacement in C, then Hom.�V 1; RX/'ƒVX .

(d) The natural maps �VX ! �VƒVX and ƒV �VX !ƒVX are equivalences for
all X . We call this the MGM equivalence.
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Proof For (a), by [44, 3.2] it is sufficient to prove that LV cC and ƒV C satisfy
the monoid axiom, since both LV c and ƒV are monoidal Bousfield localizations [3,
5.6, 6.3]. Recall that C satisfies the monoid axiom by our standing assumptions.
Therefore, ƒV C also satisfies the monoid axiom since it is a homological localization;
see for instance [8, 3.8]. To show that LV cC satisfies the monoid axiom, we note
that we can view it as a homological localization with regard to the object LV c 1, and
so part (a) follows. Part (b) is well known; see for instance [33, 3.3.3, 3.3.5; 3, 5.5].
Part (c) follows from the fact that every K.V /–equivalence is a �V 1–equivalence. The
first equivalence of part (d) is [19, 2.3], and the other follows similarly.

Certain composites are immediate from the geometric descriptions.

Proposition 4.8 Suppose that V 0 � V is an inclusion of families and U 0 � U an
inclusion of cofamilies. For all objects X of C we have natural equivalences

(a) LULU 0X
� � LUX

��! LU 0LUX ,

(b) �V �V 0X
��! �V 0X

� � �V 0�VX ,

(c) ƒV 0ƒVX
� �ƒV 0X

��!ƒVƒV 0X .

Extreme cases also simplify.

Lemma 4.9 Let C be a finite-dimensional Noetherian model category.

(a) If the Balmer spectrum of hC is irreducible (ie there is a single generic point g),
then the completion ƒ^.g/ is isomorphic to the identity.

(b) If m is a closed point of the Balmer spectrum , then there is a weak equivalence

ƒ^.m/1
��! L_.m/ƒ^.m/1:

4.3 Splittings

Recall from Example 4.6 that we write ��0 and ƒ�0 for the torsion and completion
functor associated to the family of primes of dimension zero. We use subscripts to
indicate the dimension of primes. For example, p0 indicates a prime of dimension zero,
and

L
p0

is shorthand for the sum over all primes of dimension zero. We note that
part (a) of the following result also appears in [40, 3.7].

Proposition 4.10 For all X 2 C, there are equivalences

(a) ��0X
� �
L

p0
�̂ .p0/X ,

(b) ƒ�0X
��!

Q
p0
ƒ^.p0/X .
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Proof We prove part (a) and note that part (b) follows from applying Proposition 4.7(c).
Write V0 for the family of zero-dimensional primes. We must show that

L
p0
�̂ .p0/X

has the universal property of the .K.V0/˝ G/–cellularization. In other words, we
must show that

L
p0
�̂ .p0/X is in Loc˝.Kq0

j dimq0 D 0/ and that the natural mapL
p0
�̂ .p0/X!X is a .Kq0

˝G/–cellular equivalence for each q0. The first condition
is clear from the fact that �̂ .p0/X 2 Loc˝.Kp0

/ by definition. By compactness of
Kq0
˝G, the natural map

L
p0
�̂ .p0/X!X is a Kq0

˝G–cellular equivalence if and
only if M

p0

ŒKq0
˝G; �̂ .p0/X�! ŒKq0

˝G;X�

is an equivalence for all zero-dimensional primes q0 and G 2 G.

If q0 ¤ p0, we claim that ŒKq0
˝ G; �̂ .p0/X� D 0. Since �̂ .q0/Kq0

! Kq0
is an

equivalence, ŒKq0
˝G; �̂ .p0/X�D ŒKq0

˝G;ƒ^.q0/�̂ .p0/X�. The map �̂ .p0/X! 0

is aKq0
–equivalence since the support of �̂ .p0/Kq0

is empty; henceƒ^.q0/�̂ .p0/X'0.
Therefore, M

p0

ŒKq0
˝G; �̂ .p0/X�! ŒKq0

˝G;X�

is an equivalence if and only if ŒKq0
˝G; �̂ .q0/X�! ŒKq0

˝G;X� is an equivalence,
which is true by the definition of �̂ .q0/.

It is worth making explicit some consequences for the torsion part.

Corollary 4.11 (a) If the support of X consists of primes of dimension i then

X '
M
pi

�̂ .pi /X '
M
pi

L_.pi /X:

(b) If the support of X consists of primes of dimension � i then there is an equiva-
lence

��iX
� �

M
pi

�̂ .pi /X:

(c) If the support of X consists of primes of dimension � i then there is an equiva-
lence

L�iX
� �

M
pi

L_.pi /X:
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5 Examples

We now illustrate the theory described in the previous sections with several examples.
We will suppress notation for underlying (co)fibrant replacements in the construction
of the functors � , L and ƒ, in order to not unnecessarily overburden the notation.
For instance, we will often write ƒX D Hom.�1; X/, where the target X should be
implicitly interpreted as fibrantly replaced as in Proposition 4.7.

Notation 5.1 We emphasize that we label primes by their dimension and write this
as a subscript; see for instance Example 4.6. Therefore pi denotes a Balmer prime of
dimension i . We also draw Balmer spectra with dimension increasing up the page, so
that closed points are at the bottom. Arrows indicate inclusion.

5.1 Derived commutative algebra

LetR be a Noetherian commutative ring. We write ModR for the category of unbounded
chain complexes of R–modules. There is a an order reversing homeomorphism which
is given by

Spec.R/! Spc!.D.R//; } 7! fM 2 D.R/! jM} ' 0g:

If R is a finite-dimensional commutative Noetherian ring, then ModR is a finite-
dimensional Noetherian model category when equipped with the projective model
structure.

Writing } in place of the corresponding Balmer prime, the functors �̂ .}/, ƒ^.}/ and
L_.}/ correspond to the usual functors of derived torsion, derived completion and
localization in algebra. There are explicit models for these functors as follows. Suppose
that } D .x1; : : : ; xn/. We define the stable Koszul complex by

K1.}/D
�
R!R

h
1

x1

i�
˝R � � � ˝R

�
R!R

h
1

xn

i�
and the Čech complex LC}R is the suspension of the kernel of the natural map
K1.}/ ! R. Up to equivalence this does not depend on the chosen generators
of }. Then we have the following identifications for an R–module X :

�̂ .}/X 'K1.}/˝R X; ƒ^.}/X ' HomR.K1.}/;X/; L_.}/X 'X} :

As usual X} is the localization at the ideal } so it inverts the multiplicative set R n}.
On the other hand, L.^}/cX is the localization away from }, so can be calculated as
LC}R˝R X . For more details see for instance [17; 22].
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For example, take R D Z and } D .p/; we may take K.p/ D Z=p. Thus �̂ .p/Z'

†�1Z=p1, L_.p/Z' Z.p/ and ƒ^.p/Z' Zp, the p–adic integers.

5.2 Chromatic homotopy theory

Let Sp.p/ denote the category of p–local spectra equipped with the stable model
structure. Let

P.n/D fX 2 hSp!.p/ jK.n/�.X/D 0g;

where K.0/ is rational homology, K.1/ is mod p homology and, for finite n � 1,
K.n/ is the nth mod p MoravaK–theory. By the Künneth theorem, the P.n/ are prime,
and Hopkins and Smith [31] showed that the Balmer spectrum is linear:

P.0/� P.1/� P.2/� � � � � P.n/� � � � � P.1/:

Note that this Balmer spectrum is not finite-dimensional (worse still, non-Noetherian).
As such, we use the smashing localization Ln D LK.0/_���_K.n/ to obtain a finite-
dimensional Noetherian model category with Balmer spectrum

P.0/� P.1/� P.2/� � � � � P.n/;

so that the prime P.i/ is of dimension n� i in the Ln–local category.

5.3 Rational equivariant spectra

LetG be a compact Lie group. We write SpG for the category of rationalG–equivariant
spectra. The second author [20] showed that the Balmer spectrum of rational G–spectra
is in bijection with the set of conjugacy classes of closed subgroups ofG, with inclusion
corresponding to cotoral inclusion — recall that K ,! H is cotoral if K is normal
in H and the quotient H=K is a torus. The bijection is given by sending a conjugacy
class .H/ to

pH D fX jˆ
HX '1 �g:

In general the Balmer spectrum of rational G–spectra is not Noetherian. However,
when G is an r–torus the Balmer spectrum is r–dimensional and Noetherian, so the
topology is determined by the poset structure.

For example, if T is the circle group, then the Balmer spectrum is given by

pT

� � � pC4
pC3

pC2
pC1

where the arrows indicate cotoral inclusions.
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Note that the support of a rational G–spectrum X coincides with its geometric isotropy
Ig.X/DfH jˆHX 6' 0g. Any family F of subgroups of G defines a family of primes
f}H jH 2 Fg, that by abuse of notation we still denote by F. We write EF for the
universal G–space characterized by its fixed points,

.EF/H '

�
� if H 2 F;
∅ if H … F;

and zEF for the cofibre of the nonzero mapEFC!S0. Then we have the identifications

�FX 'EFC ^X; ƒFX ' F.EFC; X/; LFcM ' zEF^X:

6 The standard model

Throughout we fix a finite-dimensional Noetherian model category C and a family
of primes V in Spc!.hC/. This gives a set of Koszul objects K.V / and associated
functors �V , LV c and ƒV as defined in Section 4. When no confusion is likely to arise
we will drop the reference to the family V .

Remark 6.1 The machinery developed in this paper applies to any rigidly compactly
generated model category C equipped with functors � , L andƒ satisfying the properties
listed in Section 4. For example, these functors can be defined whenever C is part of
a local duality context [10] or a Tate context [19]. We have decided to present this
material from the perspective of the Balmer spectrum, as this approach better suits our
long-term goal of constructing a torsion model for a tensor-triangulated category via
the dimension filtration [4].

Definition 6.2 We write T y for the diagram

L1

ƒ1 Lƒ1

�

'

which we shall refer to as the Tate cospan.

Lemma 6.3 [19, 2.3] The homotopy pullback of T y is weakly equivalent to 1.
Accordingly, for any X , the square

X L1˝X

ƒ1˝X Lƒ1˝X
is a homotopy pullback.
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Proof The fibres of 1! L1 and ƒ1! Lƒ1 are both equivalent to �1 and hence 1
is the homotopy pullback.

By Proposition 4.7 we know that the objects appearing in the Tate cospan are monoid
objects in C. As such we can construct module categories over them.

Definition 6.4 We define the pre-standard category Cpre-s to be the category of sections
of the diagram category

ModL1

Modƒ1 ModLƒ1

��

'�

where the arrows are the extensions of scalars coming from the ring maps � WL1!Lƒ1
and ' Wƒ1! Lƒ1. We equip this category with the dimp model structure where the
weak equivalences and cofibrations are determined objectwise in the projective model
structure on modules; see Notation 2.8.

Recall from Definition 2.5 that the category Cpre-s has objects which are quintuples
.V;N;W; f; g/ such that

� V 2ModL1;

� N 2Modƒ1;

� W 2ModLƒ1;

� f W Lƒ1˝L1 V !W in ModLƒ1;

� g W Lƒ1˝ƒ1N !W in ModLƒ1.

We will usually draw such an object as a diagram

(1)
V

N W

f

g

where the dashed arrow indicates the existence of a map after extension of scalars.

We define a functor .�/stan W C! Cpre-s by tensoring with the Tate cospan:

Xstan D

0BB@
L1˝X

ƒ1˝X Lƒ1˝X

1CCA :
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This functor admits a right adjoint which is given by taking the pullback. More precisely,
consider an object in the pre-standard category as in (1). By adjunction, the data of
Lƒ1–module maps f W Lƒ1˝L1 V !W and g W Lƒ1˝ƒ1N !W is equivalent to
the data of maps f # W V ! ��W and g# WN ! '�W of L1–modules and ƒ1–modules,
respectively. Therefore, by applying the forgetful functors, we can view the cospan

N
g#
�!W

f #
 � V

as a diagram in C. Taking the pullback of this diagram gives a functor lim W Cpre-s! C.

Theorem 6.5 The adjunction

C Gstan-cell-Cpre-s
.�/stan

lim

is a Quillen equivalence , where G is a set of compact generators for C.

Proof The compact generators G of C get sent to compact objects of Cpre-s as in
[26, 4.1]. Since the derived unit is a weak equivalence by Lemma 6.3, the cellularization
principle [24, 2.7] applies to give the result.

The following theorem is the one-step case of the result of [3, 9.5]:

Theorem 6.6 A bifibrant object .V;N;W; f; g/ 2 Cpre-s is bifibrant in Gstan-cell-Cpre-s

if and only if f WLƒ1˝L1 V !W and g WLƒ1˝ƒ1N !W are weak equivalences.
As such , Gstan-cell-Cpre-s is the strict homotopy limit of the diagram category in the
sense of [12].

As a warm up for our approach to the torsion model in Section 8, we observe that one
can improve upon the above theorem as we now describe.

Definition 6.7 The category Cepre-s of extended pre-standard objects is the full sub-
category of Cpre-s consisting of objects .V;N;W; f; g/ for which f WLƒ1˝L1V !W

is an isomorphism. Diagrammatically, the objects are those of the form

V

N W

�

g

where the dot on the arrow indicates that the map is an isomorphism after extension of
scalars. By adjunction, an object of Cepre-s is equivalently a ƒ1–module map ˇ WN !
Lƒ1˝L1 V .
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There is an evident inclusion Cepre-s ,!Cpre-s admitting a right adjoint �e WCpre-s!Cepre-s,
which is defined by

�e

0BB@
V

N W

f

g

1CCAD V

N 0 Lƒ1˝L1 V

�

where N 0 is the pullback

N 0 Lƒ1˝ƒ1 V

N W

f

g#

in the category of ƒ1–modules.

There exists a dimp model structure on Cepre-s, and a simple application of the cellular-
ization principle [24] shows that Gstan-cell-Cpre-s 'Q Gstan-cell-Cepre-s.

Definition 6.8 The standard model for C is the model category Cs D Gstan-cell-Cepre-s.

Combining this with the previous results of this section we obtain the following:

Theorem 6.9 There is a zigzag of Quillen equivalences

C'Q Cs:

Moreover , an object in the homotopy category of Cs is determined by the data of a
ƒ1–module map ˇ WN !Lƒ1˝L1V such that Lƒ1˝ƒ1ˇ is an equivalence , where
N is a ƒ1–module and V is an L1–module.

7 The pre-torsion model

We now move towards the torsion model. We note that the setup remains the same as
in Section 6. Implicitly we have fixed a family of Balmer primes V and a set of Koszul
objects KD K.V /.

7.1 Enriching the splicing maps

In algebra, any torsion module is naturally a module over the adic completion. This is
the crucial difference between the adelic and Zariski models. The following lemma
gives a version for our context:
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Lemma 7.1 There is a Quillen equivalence

.K˝G/-cell-C'Q .ƒ1˝K˝G/-cell-Modƒ1.C/:

Proof There is a ring map � W 1!ƒ1 which induces a Quillen adjunction

ƒ1˝�W C � Modƒ1 W�
�:

We apply the cellularization principle [24, 2.7] at the set of compact objects K˝G in C.
The objectsƒ1˝K˝G are compact asƒ1–modules for allK 2K andG 2G since the
restriction of scalars functor preserves sums. The derived unit K˝G!ƒ1˝K˝G
is an equivalence for all K 2 K and G 2 G by the MGM equivalence, since each K is
torsion and � is smashing. Therefore the stated Quillen equivalence holds.

In light of the previous lemma, when considering torsion modules we can work overƒ1.

Definition 7.2 We define the pre-torsion category Cpre-t to be the category of sections
of the diagram category

ModL1

ModLƒ1 Modƒ1:

��

'�

The vertical map �� is the extension of scalars Lƒ1˝L1� along the ring map � WL1!
Lƒ1, while the horizontal map is restriction of scalars along the ring map ' Wƒ1!
Lƒ1.

Remark 7.3 The categories Cpre-s and Cpre-t are defined as the categories of sections
over two very similar diagrams. The crucial difference lies in the map ' Wƒ1! Lƒ1:
in the first case we extend scalars along ' whereas in the second we restrict scalars
along '.

By Definition 2.5, an object in Cpre-t is a quintuple .V;W; T; f; g/, where

� V 2ModL1;

� W 2ModLƒ1;

� T 2Modƒ1;

� f W ��V !W in ModLƒ1;

� g W '�W ! T in Modƒ1.
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The morphisms in Cpre-t are triples .˛ W V ! V 0; ˇ WW !W 0;  W T ! T 0/ such that
the evident squares commute.

As in the pre-standard model, we will often denote this object by

V

W T

f

g

where we have not made the horizontal morphism dashed as we will rarely make any
reference to the restriction of scalars.

In order to equip Cpre-t with a model structure, we require both �� and '� to be Quillen
of the same handedness. In general, �� will not be a right adjoint, and so we view both
of the functors as left adjoints.

Recall from Lemma 2.3 that in the projective model structure on modules �� is always
left Quillen, whereas '� is left Quillen if and only ifLƒ1 is cofibrant as anƒ1–module.
We now describe how to pick models for L1, ƒ1 and Lƒ1 with this property. This
will allow us to endow Cpre-t with the dimp model structure from Notation 2.8. There
are two approaches depending on whether the commutativity of the rings is important.

7.2 Noncommutative case

We may choose a model for L1 which is cofibrant as a ring, and therefore as an
object of C by [35, 4.1(3)]. Tensoring the map 1! L1 with ƒ1 gives a ring map
ƒ1! L1˝ƒ1 which is a cofibration of ƒ1–modules. As ƒ1 is a cofibrant ƒ1–
module, this shows that L1˝ƒ1 is a cofibrant ƒ1–module. Since L is smashing,
L1˝ƒ1 is a model for Lƒ1, and since it is a cofibrant ƒ1–module, the restriction of
scalars functor '� WModLƒ1!Modƒ1 is left Quillen as desired.

We emphasize that since we took cofibrant replacements as rings/algebras, the resulting
objects need not admit a commutative multiplication. However, we give an alternative
approach in the next subsection.

7.3 Commutative case

In many cases of interest, the rings at play in the torsion model are actually commutative.
For example, if T is the circle group, and F denotes the family of finite subgroups
of T , then zEF is a (genuinely) commutative ring T–spectrum [21]. If L1 and ƒ1 are
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commutative, and the category supports a convenient model structure, then we can
preserve commutativity in the torsion model.

Definition 7.4 Let C be a monoidal model category and suppose that there exists
another monoidal model structure zC on the same underlying category as C, which has
the same weak equivalences and for which the identity functor zC!C is left Quillen. We
say that .C; zC/ is convenient if the forgetful functor CAlgS .zC/!ModS .C/ preserves
cofibrant objects for all commutative monoids S 2 C.

Examples 7.5 The following pairs of model structures are all convenient:

(1) (projective, projective) on chain complexes over a field of characteristic zero;
see for instance [43, Section 5.1].

(2) The pair (stable, positive stable) of model structures on spectra is not convenient.
However, Shipley [37, 4.1] constructs a flat and positive flat model structure on
spectra such that (flat, positive flat) is convenient. We note that there is a left
Quillen equivalence from the stable model structure to the flat model structure.

(3) The previous example also works for equivariant spectra. More precisely, the
pair of model structures (flat, positive flat) on equivariant spectra constructed
in [14, 4.2.15] is convenient.

In order to ensure that the restriction of scalars functor '� is left Quillen, we first take
a model of L1 which is cofibrant as a commutative ring in the model structure right
lifted from zC. If .C; zC/ is convenient then this model of L1 is also cofibrant as an
object of C. Therefore the ring map ƒ1! L1˝ƒ1 is a cofibration of ƒ1–modules,
and as such the restriction of scalars along this map is left Quillen.

7.4 Constructing the pre-torsion model

We now define an adjunction between C and Cpre-t and show that after a suitable
cellularization this gives a Quillen equivalence. This is the first step towards the torsion
model constructed in the next section.

We define a functor .�/tors W C! Cpre-t by

Xtors D

0BB@
L1˝X

Lƒ1˝X †�1˝ƒ1˝X

1CCA
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where the vertical map is induced by the identity and the horizontal map is induced by
the triangle ƒ1! Lƒ1!†�ƒ1.

Remark 7.6 In light of Lemma 7.1 and the MGM equivalence � ' �ƒ, any torsion
module is equivalent to aƒ1–module. As such, the object†�1˝ƒ1˝X is equivalent
to †�X .

The functor .�/tors W C! Cpre-t has a right adjoint R W Cpre-t! C defined by sending the
object

V

W T

f

g

to the pullback of the cospan
V

fib.g WW ! T / W

f #

Note that f W Lƒ1˝L1 V !W is the adjunct of a map f # W V !W of L1–modules.
Therefore, applying the forgetful functors, we view the cospan as a diagram in C and
take the pullback in C.

Remark 7.7 Equivalently, the functor R is the fibre of the composite gf #. Using this
description one sees that the derived unit X! R.Xtors/ is an equivalence for all X 2 C
since the fibre of the canonical map L1˝X ! †�1˝ƒ1˝X is X by the MGM
equivalence.

Lemma 7.8 The objects in Gtors are compact in the homotopy category of Cpre-t.

Proof The evaluation functors Cpre-t!ModL1 and Cpre-t!Modƒ1 have left adjoints
defined by

a.V /D

0BB@
V

Lƒ1˝L1 V Lƒ1˝L1 V

1CCA and b.T /D

0BB@
0

0 T

1CCA ;
respectively. It is clear from the definitions of a and b that they preserve cofibrations
and weak equivalences since these are defined objectwise. Therefore a and b are left

Algebraic & Geometric Topology, Volume 22 (2022)

 This publication is with permission of the rights owner freely accessible due to an Alliance
licence and a national licence respectively.



Torsion models for tensor-triangulated categories: the one-step case 2835

Quillen. Note that the derived functors of a and b preserve compact objects since the
derived evaluation preserves sums. Since cofibre sequences are vertexwise, for all
G 2 G we have a cofibre sequence

b.ƒ1˝G/! a.L1˝G/!Gtors

induced by the triangle ƒ1! Lƒ1!†�ƒ1 on the right bottom vertex. This shows
that Gtors is compact in the homotopy category of Cpre-t.

We can now prove the main theorem of this section.

Theorem 7.9 The adjunction .�/tors W C � Gtors-cell-Cpre-t WR is a Quillen equivalence.

Proof We first verify that this is a Quillen adjunction and then apply the cellularization
principle [24] at the set G of compact generators of C. Recall that Cpre-t is equipped with
the dimp model structure, so we must check that .�/tors sends cofibrations (resp. acyclic
cofibrations) in C to objectwise cofibrations (resp. acyclic cofibrations). It is clear
for the L1 and Lƒ1 coordinates since extension of scalars is left Quillen. In the
final coordinate, .�/tors is given by tensoring with †�1˝ƒ1˝�. Therefore we
must show that †�1˝ƒ1˝� sends cofibrations (resp. acyclic cofibrations) in C to
cofibrations (resp. acyclic cofibrations) of ƒ1–modules. As extension of scalars along
1!ƒ1 is left Quillen, it suffices to show that �1˝� is left Quillen as an endofunctor
of C. This is true since �1 is cofibrant in C by definition of the functor � . Therefore,
.�/tors W C � Cpre-t WR is a Quillen adjunction.

By Lemma 7.8, Gtors is a set of compact objects of the homotopy category of Cpre-t.
The derived unit of the Quillen adjunction

.�/tors W C � Cpre-t WR

is a weak equivalence by Remark 7.7. Therefore the cellularization principle shows
that the stated Quillen equivalence holds.

7.5 Relation to the pre-standard model

The adjunction .�/tors W C � Cpre-t WR factors through the pre-standard category Cpre-s

as follows. We define a functor hcof W Cpre-s! Cpre-t,

hcof

0BB@
V

N W

1CCAD V

W cof.N !W /
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by taking the horizontal cofibre in the category ofƒ1–modules. Note that by adjunction,
the map Lƒ1˝ƒ1N !W defines a map of ƒ1–modules N !W , and it is this map
whose horizontal cofibre we take. Similarly, one defines a functor hfib W Cpre-t! Cpre-s

by taking the horizontal fibre as ƒ1–modules. One notes that the left and right adjoint
of the composite adjunction

C Cpre-s Cpre-t
.�/stan hcof

lim hfib

are .�/tors D .hcof/ ı .�/stan and RD .lim/ ı .hfib/.

It is also easy to see that these functors give a Quillen equivalence

hcof W Cpre-s � Cpre-t Whfib;

and hence a Quillen equivalence

hcof W Gstan-cell-Cpre-s � Gtors-cell-Cpre-t Whfib

relating the models for C described in Theorems 6.5 and 7.9.

8 The torsion model

Here we provide a Quillen equivalence between the model category Gtors-cell-Cpre-t

considered in the previous section and a cellularization of a certain subcategory Cepre-t.
The cellularization of Cepre-t is the torsion model Ct . This description will allow us to
understand the homotopy category of the torsion model.

Definition 8.1 The category Cepre-t of extended pre-torsion objects is the full sub-
category of Cpre-t of objects .V;W; T; f; g/ for which the map f W Lƒ1˝L1 V !W

is an isomorphism. Diagrammatically, the objects are those of the form

V

W T

�

g

where the dot on the arrow indicates that the map is an isomorphism after extension
of scalars. For brevity, and in line with [18], we will often say that an object of the
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extended pre-torsion model is a ƒ1–module map ˇ WLƒ1˝L1V ! T . In this notation
a map is a commutative square

Lƒ1˝L1 V T

Lƒ1˝L1W U

Lƒ1˝L1'

ˇ

 



There is an adjunction
Cpre-t Cepre-t

�e

i

where i is the evident inclusion and �e is defined by

�e

0BB@
V

W T

f

g

1CCAD V

Lƒ1˝L1 V T

�

gf

We note that Cepre-t has all limits and colimits. Colimits are calculated in Cpre-t whereas
limits are obtained by applying the functor �e to the limits in Cpre-t. By [28, 2.1], we
may endow the category Cepre-t with the dimp model structure; see Notation 2.8.

Lemma 8.2 There is a Quillen equivalence

Gtors-cell-Cpre-t Gtors-cell-Cepre-t:
�e

i

Proof Since the weak equivalences and cofibrations are determined objectwise in
the diagram injective model structure, it is clear that the inclusion i preserves them.
Therefore, the adjunction (without the cellularizations) is a Quillen adjunction. Since i
sends Gtors to Gtors, the Quillen adjunction passes to the cellularizations. By Lemma 7.8,
Gtors is a set of compact objects in Cpre-t, and it follows similarly that the objects of Gtors

are also compact in Cepre-t. Therefore, by the cellularization principle [24], it is enough
to show that the derived unit is a weak equivalence on Gtors, which is clear.

Definition 8.3 The torsion model of C is the model category

Ct D Gtors-cell-Cepre-t:

Combining the results of Theorem 7.9 and Lemma 8.2 gives the following statement:

Theorem 8.4 There is a zigzag of Quillen equivalences C'Q Ct .
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We now turn our attention to identifying the homotopy category of the torsion model Ct .
We will use the following observation throughout:

Remark 8.5 If L is a set of compact objects, then the homotopy category of L-cell-C
can be identified with the localizing subcategory of hC generated by L; see [24, 2.5, 2.6].

Lemma 8.6 An objectX 2C is .�1˝G/–cellularly acyclic if and only if it is .K˝G/–
cellularly acyclic. Therefore , the cellularizations of C at the sets .�1˝G/ and .K˝G/
are equal as model categories.

Proof Since �1 is torsion, the reverse implication is clear. Conversely, suppose that
Œ�1˝G;X�' 0 for all G 2 G. This means that ŒG;Hom.�1; X/�D 0 for all G 2 G
and so Hom.�1; X/' 0 in C. Then ŒK˝G;Hom.�1; X/�' 0 for each K 2 K, and
since �K 'K, we conclude that ŒK˝G;X�D 0 as required. The second claim then
follows since the cellularly acyclic objects determine the weak equivalences in the
cellularization.

Theorem 8.7 A bifibrant object .ˇ W Lƒ1˝L1 V ! T / of Cepre-t is bifibrant in Ct if
and only if the natural map �T ! T is a weak equivalence in C.

Proof Let LD L.K;G/ be the set of objects of Cepre-t of the form

.0!ƒ1˝K˝G/ and .Lƒ1˝G! 0/;

where K ranges over K and G ranges over the generators G. First, we show that
Ct D L-cell-Cepre-t as model categories. Note that there is a triangle

.0!†�1˝ƒ1˝G/! .Lƒ1˝G!†�1˝ƒ1˝G/! .Lƒ1˝G! 0/

and combining this with Lemma 8.6 shows that an object of Cepre-t is Gtors–cellularly
acyclic if and only if it is L–cellularly acyclic. Therefore the Gtors–cellularization and
the L–cellularization give the same model category.

We now claim that the objects in L are compact. Since ƒ1˝K ˝G is compact as
a ƒ1–module and sums in Cepre-t are computed levelwise, we immediately see that
.0!ƒ1˝K˝G/ 2 L is compact. To see that .Lƒ1˝G! 0/ is compact, we show
that any map in Cepre-t

Lƒ1˝L1 .L1˝G/ 0

Lƒ1˝L1
�L

i Vi
� L

i Ti

Lƒ1˝'
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factors through a finite stage. This is clear since the image of ' is nonzero only for
finitely many indices i , as L1˝G is a compact L1–module.

Since the objects in L are compact, the bifibrant objects in L-cell-Cepre-t are exactly the
objects of the localizing subcategory Loc.L/. From this it is clear that

.ˇ W Lƒ1˝L1 V ! T / 2 Cepre-t

is bifibrant in the cellularization if and only if �T ! T is an equivalence.

Remark 8.8 By Theorem 8.7, an object in the homotopy category of the torsion model
Ct is represented by the following data:

(i) an L1–module V ;

(ii) a ƒ1–module T which is torsion in the sense that the natural map �T ! T is a
weak equivalence;

(iii) a ƒ1–module map ˇ W Lƒ1˝L1 V ! T .

Since extension of scalars along 1!ƒ1 does not affect cellularization by Lemma 7.1,
we may assume T is a ƒ1–module and can replace (ii) and (iii) with

(ii0) an object T 2 C such that �T ! T is a weak equivalence;

(iii0) a map ˇ0 W V ! T in C.

We call (i), (ii), (iii) adelic data and (i), (ii0), (iii0) Zariski data. The message of this
paper is that one should use the adelic data because they are closer to algebra than
the Zariski data, and we think of the adelic data as an enrichment of the Zariski data.
For example with rational SO.2/–spectra, in the Zariski formulation we are working
with modules over the SO.2/–equivariant rational sphere which has a very complicated
algebraic structure. However, in the adelic formulation we work over DEFC, which is
formal and �T

� .DEFC/D OF is a product of polynomial rings. See Section 10 for
more details.

Example 8.9 Let us consider the torsion model for ModZ with the family of closed
points, ie the family of primes corresponding to the algebraic ideals .p/ for p>0 prime.
Recall that a maximal prime in Spec.Z/ becomes minimal in the Balmer spectrum.
The set fZ=p j p primeg is a set of Koszul objects for this family of primes. Using
Proposition 4.10 and Section 5.1 we calculate

L1DQ; �1D
M
p prime

†�1Z=p1; ƒ1D
Y

p prime

Zp:
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Furthermore, by Proposition 4.10, a complex T 2ModZ satisfies �T ' T if and only
if it decomposes as T '

L
p Tp , where Tp is derived p–torsion. Therefore the data in

the Zariski torsion model for ModZ consists of

� a rational chain complex V 2ModQ;

� a derived p–torsion complex Tp for each prime number p;

� a chain map ˇ W V !
L
p Tp.

The adelic torsion model instead consists of

� a rational chain complex V 2ModQ;

� a derived p–torsion complex Tp for each prime number p, but now seen as a
module over Zp;

� a map
�Q

p Zp
�
˝V !

L
p Tp of

�Q
p Zp

�
–modules.

Remark 8.10 Finally, let us record the precise relationship between the standard
model and the torsion model. Combining the results of Section 7.5 with Lemma 8.2,
one sees that there is a zigzag of Quillen equivalences

Cs Gstan-cell-Cpre-s Gtors-cell-Cpre-t Ct
hcof

�e �ehfib

between the standard model and torsion model for C.

9 Cellular skeleton theorems

The cellularization of the model structure present in the torsion model forces one of
the objects to be derived torsion; see Theorem 8.7. If one is in a suitably algebraic
situation, one can internalize this cellularization and prove a Quillen equivalence to a
category of differential objects in an abelian category where this object is now torsion
at the abelian level. We call such a Quillen equivalence a cellular skeleton theorem, and
in this section we prove such a result. We then apply this to simplify the torsion model
for the derived category of a regular local ring of Krull dimension 1. In Section 10 the
cellular skeleton theorem will provide the final step in proving the algebraic torsion
model for rational T–spectra.
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9.1 Torsion functors

In this section we fix a commutative ring R and a multiplicatively closed set E of R.

Definition 9.1 The E–torsion functor �E WModR!ModR is defined by sending an
R–module N to the kernel of the map N ! E�1N . If the natural map �EN !N is an
isomorphism, we say that N is E–torsion. We write ModE-tors

R for the full subcategory
of ModR consisting of the E–torsion modules.

Remark 9.2 The E–torsion functor is easily expressed in terms of the torsion functors
for principal ideals

�EN D colim
a2E

�aN:

We will be working under the following additional assumption:

Hypothesis 9.3 The torsion functor �E WModR!ModR preserves injective modules.

If R is Noetherian then this hypothesis holds as a consequence of the Baer criterion;
see [13, 2.1.4]. One immediately sees that ModE-tors

R is an abelian category with enough
injectives. This hypothesis ensures that the injective dimension of a torsion module is
the same whether we think of it in the category of E–torsion modules or in the category
of R–modules.

9.2 The cellular skeleton theorem

Suppose we have a diagram of commutative rings S ! E�1R  R where E is a
multiplicative set in R. Furthermore, we assume that the E–torsion functor preserves
injective modules as in Hypothesis 9.3.

Consider the sections of the diagram category

ModS

ModE�1R ModR

�

where the vertical is extension of scalars along the ring map S ! E�1R and the
horizontal is restriction of scalars along the ring map R ! E�1R. We denote the
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sections of this category by yAt . An object of yAt is given by the data of an R–module
map E�1R˝S V !N , where V is an S–module and N is an R–module.

We are interested in situations when yAt is cellularized in such a way that the map
�EN !N is forced to be a quasi-isomorphism, so that in particular, the homology of
N is E–torsion. The goal of this section is to prove that one can make this strict at the
abelian level by replacing N with a E–torsion module.

Definition 9.4 We define the category At to have R–module maps E�1R˝S V ! T

as objects, where V is an S–module and T is a E–torsion R–module. Morphisms in At

are commutative squares

E�1R˝S V T

E�1R˝S W U

1˝'  

The category At is abelian with kernels and cokernels defined levelwise.

Lemma 9.5 (a) The abelian category At has enough injectives.

(b) The category dAt of differential objects in At supports a dimi model structure
in which the weak equivalences are the objectwise quasi-isomorphisms and the
cofibrations are the objectwise monomorphisms.

(c) Suppose that S is a field. Then injdim.At /D injdim.ModR/C 1.

Proof For an S–module V and an E–torsion R–module T , we put

et .V /D .E�1R˝S V ! 0/ and f t .T /D .E�1R˝S HomR.E�1R; T /! T /;

where the second map is the evaluation. A straightforward calculation shows that et and
f t are right adjoint to the respective forgetful functors. The forgetful functors are exact,
as (co)kernels in At are defined levelwise, and therefore et and f t preserve injectives.
Consider an object X D .E�1R ˝S V ! T / 2 At and choose a monomorphism
T ! I , where I is an injective E–torsion module. Then there is a monomorphism
X!f t .I /˚et .V / and so part (a) follows. Part (b) then follows from [18, Appendix B].

For part (c), we write r for the injective dimension of the category of R–modules.
Consider an object X D .E�1R˝S V ! T / of At and choose an injective resolution

0! T
˛0
�! I0

˛1
�! I1! � � � ! Ir�1

˛r
�! Ir ! 0
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of T . We put Vi D HomR.E�1R; Ii / for all i � 0. Then one checks that there is an
exact sequence

0!X!et .V /˚f t .I0/!et .V0/˚f
t .I1/!� � �!et .Vr�1/˚f

t .Ir/!et .Vr/!0

which provides an injective resolution of X in At . This shows that the injective
dimension is less than or equal to rC1. Finally we note that the bound can be achieved.
For example, using the notation above,

ExtrC1At
.et .S/; .0! T //D HomAt

.et .S/; et .Vr//D Vr D ExtrR.E
�1R; T /;

which need not be zero.

Remark 9.6 The category yAt supports both a dimi and dimp model structure, but
the category dAt supports only a dimi model structure since there are enough torsion
injectives, but in general no torsion projectives.

We now construct an adjunction .i; �t / between the categories yAt and dAt described
above. There is an evident inclusion i W dAt ! yAt . We now claim that this has a right
adjoint �t defined by sending X D .E�1R˝S V

˛
�!N/ to the object

�t .X/D
�
E�1R˝S V 0! .E�1 ker.˛//=ker.˛/

�
as described by the following diagram:

V 0

E�1R˝S V 0 V

ker.˛/ E�1 ker.˛/ E�1 ker.˛/=ker.˛/

ker.˛/ E�1R˝S V N
˛

We move from the wavy diagram to the dashed diagram by first taking ker.˛/. We
note that the map ker.˛/! E�1R˝S V must factor through E�1 ker.˛/ since E is
invertible in E�1R˝S V . The cokernel of the map ker.˛/! E�1 ker.˛/ gives the
E–torsion object replacing N . We then construct the object V 0 by taking the pullback
of

E�1 ker.˛/! E�1R˝S V  V

and note that we have a map from the extension of V 0 via composition.
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If N is already E–torsion, then �t .X/ D X . Therefore the unit of the adjunction
X ! �t iX is given by the identity, whereas the counit i�tY ! Y is the map depicted
in the previous diagram. As such, .i; �t / forms an adjoint pair.

Lemma 9.7 Let L D f.E�1R ! 0/; .0 ! K/K2Kg, where K is a set of compact
generators for the derived category of E–torsion R–modules. A bifibrant object
.˛ W E�1R˝S V ! N/ 2 yAt is bifibrant in the L–cellularization if and only if the
canonical R–module map �EN !N is a quasi-isomorphism.

Proof We argue that the cells .E�1R! 0/ and .0! K/ are compact in yAt so we
can identify the homotopy category of the cellularization with the localizing subcate-
gory generated by the cells. The desired result then follows by a standard localizing
subcategory argument.

It is clear by assumption that the cell .0! K/ is compact in yAt , so it remains to
show that .E�1R! 0/ is compact. Consider a map from .E�1R! 0/ into a direct
sum

L
i .E�1R˝S Vi

˛i
�!Ni /. Note that any such map is uniquely determined by a

map of S–modules S !
L
i ker.˛/ which factors through a finite stage since S is a

compact S–module. It follows that the cell .E�1R! 0/ is compact and this concludes
the proof.

We now state and prove the cellular skeleton theorem.

Theorem 9.8 Let L D f.E�1R! 0/; .0! K/K2Kg, where K is a set of compact
generators for the derived category of E–torsion R–modules. The adjunctions

L-cell- yA
dimp
t L-cell- yA

dimi
t dAdimi

t

1

1 �t

i

are both Quillen equivalences.

Proof For the first adjunction, without the cellularization the result is clear since the
identity is a left Quillen equivalence from the projective to the injective model structure
on modules. The cellularization preserves the Quillen equivalence.

For the second adjunction, we first verify that it is a Quillen adjunction. Note that

�t W yAt � dAt Wi

is a Quillen adjunction when both sides are equipped with the dimi model structure.
Therefore, by the dual result to Dugger [16, A.2], to check that

�t W L-cell- yA
dimi
t � dAdimi

t Wi
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is a Quillen adjunction it is sufficient to check that i sends objects of dAt to cellular
objects. This is clear by Lemma 9.7. To see that this Quillen adjunction is moreover a
Quillen equivalence, first note that the unit is always an equivalence. The counit is an
equivalence on objects of the form identified in Lemma 9.7, so the result follows.

9.3 Application to regular local rings of dimension 1

We now apply the cellular skeleton theorem to simplify the torsion model for the derived
category of a regular local ring of Krull dimension 1. Suppose that R is a regular
local ring which has Krull dimension 1 (ie R is a discrete valuation ring), and write m

for its maximal ideal. Take the family of prime ideals which consists of the maximal
algebraic prime m (ie the minimal Balmer prime). Since R is regular and has Krull
dimension 1, the maximal ideal m is generated by a single element, say x. We can now
identify the functors at play in the torsion model as L1DRŒx�1�, �1D†�1R=x1

and ƒ1DR^m; see Section 5.1 and Remark 9.9 for more details. Therefore the torsion
model (Theorem 8.4) gives a Quillen equivalence

ModR 'Q cell-

0BB@
ModRŒx�1�

ModR^m Œx�1� ModR^m

�

1CCA
where the cellularization can be taken at the set of cells f.0!R=x/; .R^mŒx

�1�! 0/g

by Theorem 8.7.

Define At .R/ to be the category whose objects are R^m–module maps

R^mŒx
�1�˝RŒx�1� V ! T;

where V is an RŒx�1�–module and T is an m–power torsion module. By Lemma 9.5
this is an abelian category with enough injectives. The object R=x is a compact
generator for the derived category of m–power torsion modules, and therefore applying
the cellular skeleton theorem (Theorem 9.8) shows that we have a zigzag of Quillen
equivalences

ModR 'Q dAt .R/:

Remark 9.9 We restrict to the case of regular local rings of dimension 1 so that
L1 is a ring, rather than a DGA. In general, for a local ring .R;m/, the localization
L1D LCm.R/ can be additively obtained from K1.m/ by deleting R from degree 0
and regrading. Therefore, if mD .x/ is principal, then K1.x/D .R!RŒx�1�/ and
LCm.R/DRŒx

�1�.
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10 The torsion model for rational T–spectra

We now apply the theory developed in the previous sections to establish an algebraic
torsion model for the category of rational T–spectra: Theorem 10.8 promotes the
equivalence of [18] to a Quillen equivalence.

In this part of the paper we will be working rationally, ie all spectra are rationalized
without further comment, and all homology and cohomology theories will be unreduced
with rational coefficients.

10.1 Preliminaries

Unless stated otherwise, we write T for the circle group and SpT for the category of
orthogonal T–spectra with the rational T–stable model structure. The Balmer spectrum
was discussed in Section 5.3.

We let z denote the natural representation of T , so that zn is a one-dimensional
representation with kernel F cyclic of order n. The cohomology ring H�.BT=F /D

QŒcF � is polynomial on the Euler class cF of zn.

Definition 10.1 � The family of finite subgroups of T will be denoted by F.

� We denote by OF the coefficient ring

OF D

Y
F 2F

H�.BT=F /:

� For a T–representation V , the Euler class e.V / 2 OF is the element with F –
component e.V /F D e.V F / 2H jV

F j.BT=F /, and ET D fe.V / j V
T D 0g.

� We define the F–Tate ring by tF D E�1T OF.

Recall from Section 5.3 that we have functors LFc , �F and ƒF associated to the
family F. Unravelling the definitions we see that the diagram T y

F from Definition 6.2
corresponds to the Tate diagram

zEF

DEFC DEFC ^ zEF
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Proposition 10.2 By applying the T–homotopy groups functor to the diagram T y

F

above we obtain the diagram of commutative rings

T aF D

Q

OF tF

with the obvious maps. Furthermore , the diagram T aF is intrinsically formal in the
sense that any cospan of commutative DGAs A ! B  C with homology T aF is
quasi-isomorphic to T aF .

Proof The T–homotopy groups ofDEFC can be calculated using [18, 2.2.3, 2.4.1]. It
follows from [18, Section 5.2] that �T

� .DEFC^ zEF/D tF. Finally, formality follows
from [27, 9.4, Section 9.D].

10.2 Euler torsion modules

We would like to apply the theory of Section 9 to the diagram of rings OF! tF Q

equipped with the torsion functor associated to the set ET of Euler classes. The Euler
torsion functor is the composite of two functors which both preserve injective objects
by [18, 17.3.3, 17.3.5]. Therefore, by the results in Section 9, there exists an abelian
category At .T / of injective dimension 2, whose objects have the form .tF˝V ! T /,
where T is an Euler torsion OF–module and V is a Q–module. In particular, the
category dAt .T / of differential objects in At .T / supports a dimi model structure.

In order to apply the cellular skeleton theorem we need to understand the compact
generators in the derived category of Euler torsion modules. Let eF 2 OF be the
idempotent given by projection onto the F –factor. Then we have the following useful
criterion:

Lemma 10.3 [18, 4.6.6] For an OF–module M , the following are equivalent :

(a) M is Euler torsion.

(b) M D
L
F 2F eFM and for eachm2M there exists anN >0 such that cNmD0,

where c is the total Chern class.

Lemma 10.4 The derived category of x–power torsion QŒx�–modules is generated by
any nonzero module. In particular , it is compactly generated by Q.
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Corollary 10.5 The derived category of Euler torsion OF–modules is compactly
generated by the modules H�.BT=F /=.cF /DQF for finite subgroups F .

Proof Let ˛F W T ! T be a representation with kernel exactly F , and consider
e.˛F /2H

2.BT=F /. Lemma 10.3 tells us that an OF–moduleM is Euler torsion if and
only if it decomposes as M D

L
F eFM with eFM an e.˛F /–torsion H�.BT=F /–

module. It follows that the functor M 7! .eFM/F defines an equivalence between the
category of Euler torsion OF–modules and the categorya

F 2F

e.˛F /-tors-H�.BT=F /-mod:

Therefore the claim follows from Lemma 10.4 by recalling that there is a canonical
isomorphism of rings QŒcF �!H�.BT=F / sending cF to e.˛F /.

10.3 Fixed points and commutativity

In this section we describe how to ensure a good interplay between commutativity and
cofibrancy when taking categorical fixed points. This is harder than it first appears, due
to the fact that categorical fixed points is not a Quillen functor between the flat model
structures.

Suppose that we have a map S ! R of commutative ring G–spectra. In addition,
suppose that R is a cofibrant S–module. Note that this can be forced if we work in the
flat model structure; see Section 7.3 for more details. We wish to choose a suitable
cofibrant replacement for RG , denoted by Qf .RG/, with the following properties:

(a) There is a map of commutative ring spectra ' W SG!Qf .R
G/.

(b) ' exhibits Qf .RG/ as a cofibrant SG–module.

Condition (b) ensures that the restriction of scalars functor '� is left Quillen by
Lemma 2.3. This in turn guarantees that the sections of the required diagram category
has a dimp model structure. Condition (a) is enforced to ensure that after applying
Shipley’s theorem [38, 1.2] we obtain commutative DGAs and, as such, may apply
formality arguments.

We now show that a cofibrant replacement satisfying conditions (a) and (b) does exist.
In addition, the replacement we construct will have other convenient properties which
we state as Lemmas 10.6 and 10.7.
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Taking categoricalG–fixed points, we get a map of commutative ring spectra SG!RG

since .�/G is lax symmetric monoidal. We now replace RG as a commutative SG–
algebra in the flat model structure, which gives a commutative diagram

SG Qf .R
G/

RG

�

of commutative ring spectra. Then (a) is satisfied and (b) follows from [37, 4.1].

We note that one could also cofibrantly replace RG as an SG–algebra in the stable
model structure to give ˇ WQ.RG/!RG , but that it may not be possible to satisfy both
(a) and (b) with such a replacement. Nonetheless, this alternative cofibrant replacement
acts as a useful stepping stone between G–spectra and nonequivariant spectra. This
will play an important role in the next section, via the following two lemmas:

Lemma 10.6 There is a composite Quillen adjunction

Modflat
R .SpG/ Modstable

R .SpG/ Modstable
RG .Sp/ Modstable

Q.RG/
.Sp/:

1

1

.�/G

R˝infRG inf.�/

ˇ�

ˇ�

Moreover , this composite Quillen adjunction is a Quillen equivalence if and only if the
middle adjunction is a Quillen equivalence.

Proof The middle adjunction arises from the adjoint lifting theorem since .�/G is lax
monoidal; see [36, Section 3.3] or [25] for more details. The left-hand adjunction is a
Quillen equivalence since the weak equivalences in the stable and flat model structure
are the same, and the right-hand adjunction is a Quillen equivalence since ˇ is a weak
equivalence.

Lemma 10.7 There is a map of ring spectra ˛ WQ.RG/!Qf .R
G/ which is a weak

equivalence. Therefore there is a Quillen equivalence

Modstable
Q.RG/

Modflat
Qf .RG/

˛�

˛�

given by extension and restriction of scalars.
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Proof There is a commutative square

SG Qf .R
G/

Q.RG/ RG

stable � flat

�

stable

of ring spectra. Since the right-hand vertical is an acyclic flat fibration, and hence an
acyclic stable fibration, there is a liftQ.RG/!Qf .R

G/ in the square as a map of rings.
Moreover, this is a weak equivalence by the two-out-of-three property. The claimed
Quillen equivalence follows since the identity functor is a right Quillen equivalence
from the flat model structure to the stable model structure.

10.4 The Quillen equivalences

The goal of this section is to prove the following result:

Theorem 10.8 There is a Quillen equivalence

SpT 'Q dAt .T /:

We divide the proof into several steps. Since the formality argument is a vital step
and it relies upon commutativity, we must use a convenient model structure; see the
discussion in Section 7.3. Therefore, we will work with the flat model structure on
equivariant spectra as in [14]. This introduces some complications since the categorical
fixed points functor is not Quillen as a functor Spflat

G ! Spflat. We shall use the results
of Section 10.3 to overcome these complications.

Step 1 Consider the category SpT with LD LFc , the F–nullification functor given
by LX D zEF^X . We apply Theorem 8.4 to deduce a Quillen equivalence

SpT 'Q cell-

0BB@
Mod zEF

Mod
DEFC^ zEF

ModDEFC

�

1CCA
where the right-hand side uses the flat model structure.

Step 2 The next step is to take categorical fixed points to remove equivariance. Since
the categorical T–fixed points functor SpT ! Sp is not right Quillen between the flat
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model structures, we must employ the strategy described in Section 10.3. Loosely
speaking, we first neglect the commutativity to ensure that the relevant functors are
Quillen. Once we have then passed to the nonequivariant world, one can reclaim
commutativity of the rings.

First we recall the following result:

Lemma 10.9 There are Quillen equivalences

ModDEFC 'Q Mod.DEFC/T
[25, 4.3, 9.1];

Mod zEF
'Q ModS0 [25, 7.1];

Mod
DEFC^ zEF

'Q Mod
.DEFC^ zEF/T

[25, 7.1]:

We now use the notation of Section 10.3 for the necessary cofibrant replacements.
There is a Quillen equivalence0BBB@

Mod zEF

Mod
DEFC^ zEF

ModDEFC

�

1CCCA�

0BBBB@
ModS0

Mod
.DEFC^ zEF/T

ModQ.DEFT
C
/

�

1CCCCA
where the left-hand side is equipped with the flat model structure, and the right-hand
side is equipped with the stable model structure. This Quillen equivalence follows from
Lemmas 10.6 and 10.9.

Next, we claim that there is a Quillen equivalence0BBB@
ModS0

Mod
.DEFC^ zEF/T

ModQ.DEFT
C
/

�

1CCCA�

0BBB@
ModS0

Mod
.DEFC^ zEF/T

ModQf .DEFT
C
/

�

1CCCA
where the left-hand side has the stable model structure, but the right-hand side has
the flat model structure. The functors are the identity on the leftmost vertices and
as such are Quillen equivalences since the identity functor from the stable to the flat
model structure is a left Quillen equivalence. In the bottom right vertex, applying
Lemma 10.7 shows that we have a Quillen equivalence. We emphasize that each of the
rings appearing on the right-hand side is commutative; this is vital for the next step.
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Step 3 We now apply Shipley’s theorem [38, 1.2], which says that given a commutative
HQ–algebra A, there is a commutative DGA‚A and a Quillen equivalence ModA'Q
Mod‚A, and that moreover H�.‚A/D ��A. Therefore we have a Quillen equivalence0BB@

ModS0

Mod.DEFC^
zEF/T Mod

Qf .DEFT
C
/

�

1CCA'Q
0BBB@

Mod‚.S0/

Mod‚..DEFC^
zEF/T / Mod

‚.Qf .DEFT
C
//

�

1CCCA
where each of the DGAs appearing is commutative. By Proposition 10.2, we know that
the cospan OF! tF Q is intrinsically formal as a cospan of commutative DGAs.
This gives a Quillen equivalence0BBB@

Mod‚.S0/

Mod
‚..DEFC^ zEF/T /

Mod‚.Qf .DEFT
C
//

�

1CCCA'Q
0BB@

ModQ

ModtF ModOF

�

1CCA :
We note that Shipley’s algebraicization theorem still holds in the flat model structure
by [45]. To simplify notation, we call the (underlying) category on the right yAt .T /.

Step 4 Combining the results of the previous steps, we see that we have a zigzag of
Quillen equivalences

SpT 'Q cell- yAt .T /:

We now describe the effect of the cellularization on yAt .T / and use the cellular skeleton
theorem to internalize the cellularization. Recall that an object in yAt .T / consists of
a Q–module V , a tF–module W and an OF–module N , together with module maps
˛ W tF ˝ V ! W and ˇ W W ! N . We also required the tF–module map ˛ to be an
isomorphism. As this data is equivalent to an OF–module map tF˝V !N , we will
use this shorthand notation to denote an object in the category yAt .T /.

Lemma 10.10 The cellularization of yAt .T / can be taken at the set of cells

f.tF! 0/; .0!QF /F 2Fg:

Proof We first determine the homotopy of the cells. For H 2 F, we put I.H/ D

†�2QŒcH ; c�1H �=QŒcH �, which is a torsion injective H�.BT=H/–module, and write
A.H/ for the H–Burnside ring, which is an Euler torsion OF–module. We use
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[18, 2.4.3] to see that �T
� .†EFC/ D

L
F 2F†

2I.F /. The isotropy separation se-
quence and the tom Dieck splitting show that �T

� .†EFC^T=HC/D�T
� .†T=HC/D

†2A.H/. It follows that the cells have homotopy

�T
� ..T=TC/tors/D

�
tF!

M
F 2F

†2I.F /

�
and �T

� ..T=HC/tors/D .0!†2A.H//

for H 2 F. Using Corollary 10.5, one can see that the localizing subcategory generated
by the cells f�T

� ..T=HC/tors/ jH �Tg is the same as that generated by .tF! 0/ and
.0!QF /F 2F, so they have the same cellularization.

Since f.0! QF /gF 2F is a set of compact generators for Euler torsion modules by
Corollary 10.5, applying the cellular skeleton theorem (Theorem 9.8) then gives a
Quillen equivalence

cell- yAt .T /'Q dAt .T /;

which completes the proof of Theorem 10.8.
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[9] D Barnes, J P C Greenlees, M Kędziorek, B Shipley, Rational SO.2/–equivariant
spectra, Algebr. Geom. Topol. 17 (2017) 983–1020 MR Zbl

Algebraic & Geometric Topology, Volume 22 (2022)

 This publication is with permission of the rights owner freely accessible due to an Alliance
licence and a national licence respectively.

http://msp.org/idx/mr/3389527
https://www.proquest.com/docview/1687709824
https://www.proquest.com/docview/1687709824
http://dx.doi.org/10.1016/j.aim.2020.107339
http://msp.org/idx/mr/4135418
http://msp.org/idx/zbl/1455.55008
http://dx.doi.org/10.1515/crll.2005.2005.588.149
http://msp.org/idx/mr/2196732
http://msp.org/idx/zbl/1080.18007
http://dx.doi.org/10.1353/ajm.2007.0030
http://dx.doi.org/10.1353/ajm.2007.0030
http://msp.org/idx/mr/2354319
http://msp.org/idx/zbl/1130.18005
http://dx.doi.org/10.1112/plms/pdq050
http://msp.org/idx/mr/2806103
http://msp.org/idx/zbl/1220.18009
http://dx.doi.org/10.1016/j.jpaa.2008.10.004
http://msp.org/idx/mr/2494375
http://msp.org/idx/zbl/1163.55002
http://dx.doi.org/10.2140/agt.2017.17.983
http://dx.doi.org/10.2140/agt.2017.17.983
http://msp.org/idx/mr/3623679
http://msp.org/idx/zbl/1369.55005


2854 Scott Balchin, John Greenlees, Luca Pol and Jordan Williamson

[10] T Barthel, D Heard, G Valenzuela, Local duality in algebra and topology, Adv. Math.
335 (2018) 563–663 MR Zbl

[11] D Benson, S B Iyengar, H Krause, Local cohomology and support for triangulated
categories, Ann. Sci. Éc. Norm. Supér. 41 (2008) 573–619 MR Zbl

[12] J E Bergner, Homotopy limits of model categories and more general homotopy theories,
Bull. Lond. Math. Soc. 44 (2012) 311–322 MR Zbl

[13] M P Brodmann, R Y Sharp, Local cohomology: An algebraic introduction with
geometric applications, 2nd edition, Cambridge Studies in Advanced Mathematics 136,
Cambridge Univ. Press (2013) MR Zbl

[14] M Brun, B I Dundas, M Stolz, Equivariant structure on smash powers, preprint (2016)
arXiv 1604.05939

[15] A B Buan, H Krause, O Solberg, Support varieties: an ideal approach, Homology
Homotopy Appl. 9 (2007) 45–74 MR Zbl

[16] D Dugger, Replacing model categories with simplicial ones, Trans. Amer. Math. Soc.
353 (2001) 5003–5027 MR Zbl

[17] W G Dwyer, J P C Greenlees, Complete modules and torsion modules, Amer. J. Math.
124 (2002) 199–220 MR Zbl

[18] J P C Greenlees, Rational S1–equivariant stable homotopy theory, Mem. Amer. Math.
Soc. 661, Amer. Math. Soc., Providence, RI (1999) MR Zbl

[19] J P C Greenlees, Tate cohomology in axiomatic stable homotopy theory, from “Coho-
mological methods in homotopy theory” (J Aguadé, C Broto, C Casacuberta, editors),
Progr. Math. 196, Birkhäuser, Basel (2001) 149–176 MR Zbl

[20] J P C Greenlees, The Balmer spectrum of rational equivariant cohomology theories, J.
Pure Appl. Algebra 223 (2019) 2845–2871 MR Zbl

[21] J P C Greenlees, Couniversal spaces which are equivariantly commutative ring spectra,
Homology Homotopy Appl. 22 (2020) 69–75 MR Zbl

[22] J P C Greenlees, J P May, Completions in algebra and topology, from “Handbook of
algebraic topology” (I M James, editor), North-Holland, Amsterdam (1995) 255–276
MR Zbl

[23] J P C Greenlees, B Shipley, An algebraic model for free rational G–spectra for
connected compact Lie groups G, Math. Z. 269 (2011) 373–400 MR Zbl

[24] J P C Greenlees, B Shipley, The cellularization principle for Quillen adjunctions,
Homology Homotopy Appl. 15 (2013) 173–184 MR Zbl

[25] J P C Greenlees, B Shipley, Fixed point adjunctions for equivariant module spectra,
Algebr. Geom. Topol. 14 (2014) 1779–1799 MR Zbl

[26] J P C Greenlees, B Shipley, Homotopy theory of modules over diagrams of rings, Proc.
Amer. Math. Soc. Ser. B 1 (2014) 89–104 MR Zbl

Algebraic & Geometric Topology, Volume 22 (2022)

 This publication is with permission of the rights owner freely accessible due to an Alliance
licence and a national licence respectively.

http://dx.doi.org/10.1016/j.aim.2018.07.017
http://msp.org/idx/mr/3836674
http://msp.org/idx/zbl/1403.55008
http://dx.doi.org/10.24033/asens.2076
http://dx.doi.org/10.24033/asens.2076
http://msp.org/idx/mr/2489634
http://msp.org/idx/zbl/1171.18007
http://dx.doi.org/10.1112/blms/bdr095
http://msp.org/idx/mr/2914609
http://msp.org/idx/zbl/1242.55006
http://dx.doi.org/10.1017/CBO9781139044059
http://dx.doi.org/10.1017/CBO9781139044059
http://msp.org/idx/mr/3014449
http://msp.org/idx/zbl/1263.13014
http://msp.org/idx/arx/1604.05939
http://dx.doi.org/10.4310/HHA.2007.v9.n1.a2
http://msp.org/idx/mr/2280286
http://msp.org/idx/zbl/1118.18005
http://dx.doi.org/10.1090/S0002-9947-01-02661-7
http://msp.org/idx/mr/1852091
http://msp.org/idx/zbl/0974.55011
http://dx.doi.org/10.1353/ajm.2002.0001
http://msp.org/idx/mr/1879003
http://msp.org/idx/zbl/1017.18008
http://dx.doi.org/10.1090/memo/0661
http://msp.org/idx/mr/1483831
http://msp.org/idx/zbl/0921.55001
http://dx.doi.org/10.1007/978-3-0348-8312-2_12
http://msp.org/idx/mr/1851253
http://msp.org/idx/zbl/1002.55005
http://dx.doi.org/10.1016/j.jpaa.2018.10.001
http://msp.org/idx/mr/3912951
http://msp.org/idx/zbl/1412.55008
http://dx.doi.org/10.4310/HHA.2020.v22.n1.a5
http://msp.org/idx/mr/4027290
http://msp.org/idx/zbl/1440.18038
http://dx.doi.org/10.1016/B978-044481779-2/50008-0
http://msp.org/idx/mr/1361892
http://msp.org/idx/zbl/0869.55007
http://dx.doi.org/10.1007/s00209-010-0741-2
http://dx.doi.org/10.1007/s00209-010-0741-2
http://msp.org/idx/mr/2836075
http://msp.org/idx/zbl/1230.55008
http://dx.doi.org/10.4310/HHA.2013.v15.n2.a11
http://msp.org/idx/mr/3138375
http://msp.org/idx/zbl/1284.55021
http://dx.doi.org/10.2140/agt.2014.14.1779
http://msp.org/idx/mr/3212584
http://msp.org/idx/zbl/1297.55013
http://dx.doi.org/10.1090/S2330-1511-2014-00012-2
http://msp.org/idx/mr/3254575
http://msp.org/idx/zbl/1350.55022


Torsion models for tensor-triangulated categories: the one-step case 2855

[27] J P C Greenlees, B Shipley, An algebraic model for rational torus-equivariant spectra,
J. Topol. 11 (2018) 666–719 MR Zbl

[28] T Haraguchi, On model structure for coreflective subcategories of a model category,
Math. J. Okayama Univ. 57 (2015) 79–84 MR Zbl
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